Palladium-Templated Regio- and Stereoselective Cyclization of 2'-Alkenyl 2-Alkynoates and Its Synthetic Applications

Jianguo Ji, Chunming Zhang, and Xiyan Lu*
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Received June 30, 1994*

Abstract

2'-Alkenyl 2-alkynoates undergo facile stereoselective cyclization to α-(haloalkylidene)- γ-butyrolactones upon treatment with a catalytic amount of palladium complex in the presence of CuX_{2} and LiX . When an alkyl group is introduced to the 1^{\prime}-position of the alkenyl group, unsubstituted 2-propynoates mainly give trans- β, γ-disubstituted γ-lactones, and substituted 2-propynoates afford cis- β, γ-disubstituted γ-lactones. Further elaborations of the halogen atoms and the synthesis of A-factor using this method are exemplified.

Introduction

Highly selective organic reactions have found wide applications in the synthesis of complex molecules with biological activities used in pesticides and medicines. ${ }^{1}$ Transition metal-catalyzed reactions, especially those that directly lead to cyclic structures from easily available acyclic precursors, have received much attention owing to the template action of the transition metals. ${ }^{2,3}$
A number of α-methylene- γ-butyrolactones display significant biological activities, such as cytotoxity, antitumor, etc. ${ }^{4}$ Possibile applications in immunology, virology, and cancer therapy stimulate general interest in the construction of the α-methylene- γ-butyrolactone ring structure. ${ }^{5}$ However, few examples have been reported on the clinical uses of α-methylene- γ-butyrolactones because of their high toxicity. ${ }^{4,5}$ The syntheses of new α-methylene- γ-butyrolactone derivatives for screening are needed. ${ }^{6}$ We have been engaged in the development of new synthetic routes to α-alkylidene- γ-butyrolactone derivatives from acyclic 3^{\prime}-(halomethyl)-2'-alkenyl 2alkynoates. ${ }^{7}$ Recently, our work has been centered on the preparation of α-alkylidene- γ-butyrolactone deriva-
${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, February 1, 1995.
(1) Seebach, D. Angew. Chem. Int. Ed. Engl. 1990, 29, 1320. Mukaiyama, T. Challenges in Organic Chemistry; Clarendon Press: Oxford, 1990. Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237.
(2) Nobels, A. F.; Graziani, M.; Hubert, A. J. Metal Promoted Selectivity in Organic Synthesis; Kluwer Academic Publishers: Dordrecht, 1991. Trost, B. M. Pure Appl. Chem. 1992, 64, 315. Negishi, E. Ibid. 1992, 64, 323. Bäckvall, J.-E. Ibid. 1992, 64, 429. Kishi, Y Ibid. 1992, 64, 343. Noyori, R. J. Synth. Org. Chem. Jpn. 1992, 50, 1131.
(3) For recent progresses, see: Trost, B. M.; van Vranken, D. L. J. Am. Chem. Soc. 1993, 115, 444. Anderson, P. G.; Bäckvall, J.-E. Ibid. 1992, 114, 8696. Grigg, R.; Kennewell, P.; Teasdale, A.; Sridharan, V. Tetrahedron Lett. 1993, 34, 153. Oppolzer, W.; Radinov, R. N. J. Am. Chem. Soc. 1993, 115, 1593. Thle, N. C.; Heathcock, C. H. J. Org. Chem. 1993, 58, 560 . Davies, H. M. L.; Huby, N. J. S.; Cantrell, W. R.; Olive, J. L. J. Am. Chem. Soc. 1993, 115, 9468
(4) Fisher, N. H.; Oliver, E. J.; Fisher, H. D. In Progress in the Chemistry of Organic Natural Products; Herz, W., Grisebach, H., Kirby, G. W., Eds.; Springer-Verlag: New York, 1979; p 47.
(5) Hoffmann, H. M. R.; Rabe, J. Angew. Chem. Int. Ed. Engl. 1985 24, 94. Petragnani, N.; Ferraz, H. M. C.; Silva, G. V. J. Synthesis 1986, 157. Mulzer, J. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 6, p 323.
(6) Sidduri, A. R.; Knochel, P. J. Am. Chem. Soc. 1992, 114, 7579. Yamamoto, M.; Furusawa, A.; Iwasa, S.; Kohmoto, S.; Yamada, K. Bull. Chem. Soc. Jpn. 1992, 65, 1550; Bachi, M. D.; Bosch, E. J. Org. Chem. 1992, 57, 4696. Burke, S. D.; Pacofsky, G. J.; Piscopio, A. D. J. Org. Chem. 1992, 57, 2228. de Azevedo, M. B. M.; Murta, M. M.; Greene, A. E. J. Org. Chem. 1992, 57, 4567. Davies, H. M. L.; Hu, B. J. Org. Chem. 1992, 57, 4309.
tives 2 from more easily available precursors, 2^{\prime}-alkenyl 2-alkynoates 1, under the catalysis of $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ in the presence of CuCl_{2} and LiCl (eq 1). ${ }^{8}$ However, many difficulties were encountered in the further elaboration of the chlorine atom in 2 to other functionalities. Con-

sidering that a carbon-bromine bond is more suitable for further transformation, a similar catalytic system using $\mathrm{PdBr}_{2}\left(\mathrm{PhCN}_{2}, \mathrm{CuBr}_{2}\right.$, and LiBr was tried. Unfortunately, only an acyclic tetrabromo-substituted product (4a) instead of the cyclic product 3a was obtained from allyl propynoate (1a) (Scheme 1). ${ }^{8 c}$
In this paper, we report a new catalytic system to prepare 3 from acyclic 2^{\prime}-alkenyl-2-alkynoates (1) via palladium-catalyzed intramolecular cyclization. The stereochemistry of the cyclization reaction and the further elaborations of the cyclic products will also be discussed.

Results and Discussions

Cyclization of 2'-Alkenyl 2-Alkynoates. Allyl 2-butynoate (1b) was used for studying the reaction conditions. The results of cyclization of $\mathbf{1 b}$ using different palladium complexes as catalysts in the presence of CuBr_{2} and LiBr in HOAc were quite different (Table 1). Palladium complexes bearing strongly coordinating ligands, which might prevent the formation of the pal-ladium-enyne complex in the first step, were prone to give the acyclic product $\mathbf{4 b}$ (entries 1 and 2, Table 1), while catalysts without ligands or with weakly coordinating ligands favored the cyclization reactions (entries 3-8, Table 1). The Z / E ratio of the exocyclic carbon-carbon double bond of $\mathbf{3 b}$ can be increased by increasing the amount of LiBr (entries 4-6, Table 1), while too much amount of LiBr caused the formation of acyclic byproduct $\mathbf{4 b}$ (entries 7 and 8, Table 1). Four equivalents of LiBr

[^0]
Scheme 1

Table 1. Palladium-Catalyzed Cyclization of 2'-Propenyl 2-Butynoate (1b) in HOAc ${ }^{a}$

		 3b		 4b		
	b					
entry	cat.	$\begin{gathered} \mathrm{LiBr} \\ (\mathrm{mmol}) \end{gathered}$	time (h)	3b	$\begin{gathered} \text { isolated } \\ \text { yield }(\%)^{b} \\ (Z: E)^{c} \\ \hline \end{gathered}$	4b
1	$\mathrm{PdBr}_{2}\left(\mathrm{PhCN}_{2}\right.$	4	5	63	>97:3	9
2	$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$	4	5	25	88:12	45
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	4	5	95	90:10	0
4	$\mathrm{Pd}_{2}(\mathrm{dba})_{2}{ }^{2} \mathrm{CHCl}_{3}$	0	28	42	77:23	0
5	$\mathrm{Pd}_{2}(\mathrm{dba})_{2} \mathrm{CHCl}_{3}$	2	10	85	90:10	0
6	$\mathrm{Pd}_{2}(\mathrm{dba})_{2}{ }^{\text {CHCHCl }}$	4	5	95	>97:3	0
7	$\mathrm{Pd}_{2}(\mathrm{dba})_{2} \mathrm{CHCl}_{3}$	6	5	93	>97:3	1
8	$\mathrm{Pd}_{2}(\mathrm{dba})_{2}{ }^{2} \mathrm{CHCl}_{3}$	10	4	91	>97:3	4
9	$\mathrm{Pd}_{2}(\mathrm{dba})_{2}{ }^{\text {C }} \mathrm{CHCl}_{3}$	4	6	0		45^{d}

${ }^{a}$ A mixture of $1 \mathrm{lb}(124 \mathrm{mg}, 1 \mathrm{mmol})$, cat. (0.05 mmol), CuBr_{2} ($896 \mathrm{mg}, 4 \mathrm{mmol}$), LiBr, and $\mathrm{HOAc}(10 \mathrm{~mL}$) was stirred at rt under Ar. ${ }^{b}$ The products were confirmed by ${ }^{1} \mathrm{H}$ NMR, IR, mass spectral data, and microanalysis. ${ }^{c}$ The $Z: E$ ratio was determined by isolation. ${ }^{d}$ Same as a except that $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(752 \mathrm{mg}, 4 \mathrm{mmol})$ was used instead of CuBr_{2}.
are optimum. When $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ was used as oxidant in similar conditions, only $\mathbf{4 b}$ was formed, which is probably due to the addition of bromine in situ generated from oxidation of lithium bromide by $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}{ }^{9}$ (entry 9 , Table 1). Therefore the cyclization reactions of $\mathbf{1}$ were carried out using $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ in HOAc as catalyst in the presence of 4 equiv of CuBr_{2} and LiBr . The results are shown in Table 2. The configuration of the exocyclic carbon-carbon double bond in 3 was determined by comparing the chemical shifts of the vinylic proton or allylic protons in $\mathrm{R}^{1} .^{6-8}$ Under similar conditions, unsubstituted propynoate (1a) afforded only E-form (referring to the exocyclic carbon-carbon double bond) product (3a) (entry 1, Table 2), while substituted 2-propynoates [$\mathbf{1 b}-(E)-1 \mathrm{~g}]$ mainly gave Z-form products ($\mathbf{3 b}-\mathbf{3 g}$) (entries 2-9, Table 2). Compounds (Z)- and (E)-1g afforded single isomers $\mathbf{3 g}$ and $\mathbf{3 g}^{\prime}$, respectively (entries 8 and 9 , Table 2). The compounds $\mathbf{3 g}$ and $\mathbf{3 g}$ have the same MS molecular ion and analytical data but different ${ }^{1} \mathrm{H}$ NMR spectral data (shown in Table 3), indicating that $\mathbf{3 g}$ and $\mathbf{3} \mathbf{g}^{\prime}$ might be a pair of diastereomers, which is consistent with our previous report. ${ }^{8 \mathrm{aq}}$
The present reaction might occur through a mechanism similar to that proposed in our previous publication (Scheme 2). ${ }^{8 a} \mathrm{Pd}^{0}$ was first converted to $\mathrm{Pd}^{\mathrm{II}}$ species in

[^1]Table 2. Cyclization of $\mathbf{2}^{\prime}$-Alkenyl 2-Alkylnoates ${ }^{\boldsymbol{a}}$

entry	R^{1}	R^{2}	substrate	time (h)	product ${ }^{\text {b }}$	solated yield (\%)	(Z:E) ${ }^{\text {c }}$
1	H	H	1 a	5	3a	85	<3:97
2	CH_{3}	H	1b	5	3b	95	$>97: 3$
3	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	H	1 c	5	3c	96	$>97: 3$
4	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	H	1 d	5	3d	86	>97:3
5	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	H	1d	5	3d	90	$78: 22^{d}$
6	i- $\mathrm{C}_{7} \mathrm{H}_{15}$	H	1 e	8	3e	97	>97:3
7	$\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}$	H	$1 f$	10	$3 f$	81	>97:3
8	CH_{3}	Ph	($\mathrm{Z}^{\text {e }}$-1g	10	3g	91	>97:3f
9	CH_{3}	Ph	$(E)^{e}-1 \mathrm{~g}$	10	3g'	89	>97:38

${ }^{\alpha}$ A mixture of $1(1 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(52 \mathrm{mg}, 0.05 \mathrm{mmol})$, CuBr_{2} ($896 \mathrm{mg}, 4 \mathrm{mmol}$), LiBr ($348 \mathrm{mg}, 4 \mathrm{mmol}$), and $\mathrm{HOAc}(10$ mL) was stirred at rt under Ar. ${ }^{b}$ The products were confirmed by ${ }^{1} \mathrm{H}$ NMR, IR, mass spectral data, and microanalysis. ${ }^{\text {c }}$ The ratio $Z: E$ was determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d} \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 0.05 \mathrm{mmol})$ was used instead of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$. ${ }^{e}$ Referring to the allylic double bond. f Only pure $\mathbf{3 g}$ was obtained. 8 Only pure $\mathbf{3 g}^{\prime}$ was obtained.
reaction system. Compound $\mathbf{1}$ coordinates with Pd and/ or Cu complex to form the palladium-enyne complex $5,{ }^{10}$ and the subsequent stereoselective bromopalladation of carbon-carbon triple bond ${ }^{11}$ in the presence of CuBr_{2} and LiBr (cis addition for $\mathrm{R}^{1}=\mathrm{H}$ and trans addition for $\mathrm{R}^{1}=$ alkyl) affords the vinylpalladium intermediate 6. The intramolecular insertion of the $\mathrm{C}=\mathrm{C}$ bond into the $\mathrm{C}-\mathrm{Pd}$ bond yields the cyclic intermediate 7 , which in turn gives 3 and regenerates the $\mathrm{Pd}^{\mathrm{II}}$ species.
The carbon-palladium bond, like most second and third row transition metal-carbon bonds, reacts very slowly in hydrolysis reaction. ${ }^{12}$ However, the cleavage of $\mathrm{C}-\mathrm{Pd}$ bond by copper(II) halides takes place in a number of palladium-catalyzed reactions. ${ }^{13}$ The detailed mechanism of such reactions was generally speculated to proceed by reductive elimination, ${ }^{14}$ radical, ${ }^{15}$ or ionic mechanism. ${ }^{16}$ Budnik and Kochi proposed a radical mechanism based on the loss of stereochemistry in the reaction of cupric bromide with nortricycle-palladium bond. ${ }^{17}$ Bäckvall et al. studied in detail the stereochemistry of the cleavage of the $\mathrm{C}-\mathrm{Pd}$ bond by cupric chloride and concluded that this reaction proceeds via an oxidative

[^2]Table 3. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$) Spectral Data of $\mathbf{3 g}$ and $\mathbf{3 g}$

39

$\mathbf{3 g}^{\prime}$

$\mathbf{3}$	Ph	H_{a}	H_{γ}	H_{β}	CH_{3}	
$\mathbf{3 g}$	$7.55-7.40(\mathrm{~m}, 5 \mathrm{H})$	$5.06(\mathrm{~d}, J=7.60 \mathrm{~Hz}, 1 \mathrm{H})$	$4.27(\mathrm{~d}, J=9.72,1 \mathrm{H})$,	$4.15(\mathrm{~d}, 1 \mathrm{H}, J=9.72,6.30 \mathrm{~Hz})$	$3.90(\mathrm{dd}, J=7.60,6.30 \mathrm{~Hz}, 1 \mathrm{H})$	$2.65(\mathrm{~s}, 3 \mathrm{H})$
$\mathbf{3 g}$	$7.52-7.30(\mathrm{~m}, 5 \mathrm{H})$	$4.92(\mathrm{~d}, J=9.07 \mathrm{~Hz}, 1 \mathrm{H})$	$4.72(\mathrm{dd}, J=9.60,0.72 \mathrm{~Hz}, 1 \mathrm{H})$,	$3.68(\mathrm{dd}, J=9.07,6.00 \mathrm{~Hz}, 1 \mathrm{H})$	$1.80(\mathrm{~s}, 3 \mathrm{H})$	
			$4.30(\mathrm{dd}, J=9.60,6.00 \mathrm{~Hz}, 1 \mathrm{H})$			

Scheme 2

cleavage mechanism. ${ }^{12,18}$ They also found that the presence of excess free nucleophiles usually resulted in the inversion of the carbon stereochemistry. ${ }^{16,19}$ In our case, under the catalysis of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}{ }^{*} \mathrm{CHCl}_{3}$ in the presence of $\mathrm{HOAc}, \mathrm{CuBr}_{2}$, and LiBr , even when 50 equiv of CCl_{4} were used in the cyclization reaction of 1a to trap the possible radical species, we obtained only $3 a$ in 90% yield. In addition, the cyclizations of (Z)- and (E)-1g specifically yielded single isomers $\mathbf{3 g}$ and $\mathbf{3 g}$, respectively, providing a strong evidence against the radical mechanism. The configurations of $\mathbf{3 g}$ and $3 \mathbf{g}^{\prime}$ were tentatively assigned according to Bäckvall's mechanism. In another experiment, we found that the cyclization of compound 8 mainly yielded bicyclic γ-lactone 10 in the $\mathrm{PdCl}_{2}-\mathrm{CuCl}_{2}-\mathrm{LiCl}$ catalytic system, while in the $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}-\mathrm{HOAc}-$ $\mathrm{CuBr}_{2}-\mathrm{LiBr}$ system, it afforded monocyclic γ-lactones 12 and 13 (Scheme 3). This result can be explained by the different nucleophilicities of the bromide and chloride ions. In both reactions, $\mathrm{C}-\mathrm{Pd}$ species 9 was formed as the common intermediate. Thus, a competition between the olefin insertion and the oxidative cleavage by halide ions occurred. Bicyclic product 10 was formed due to the poorer nucleophilicity of the chloride ion, while oxidative cleavage predominated in case of more nucleophilic bromide ion.

Stereochemistry of Palladium-Catalyzed Cyclization of 1'-Substituted 2'-Alkenyl 2-Alkynoates. On

[^3]

Scheme 4

the basis of the retrosynthetic analysis shown in Scheme 4, we tried to synthesize bicyclic α-methylene γ-butyrolactone derivatives 14 from easily available acyclic precursors alkadienyl 2-alkynoates 17. However, when we carried out the cyclization of 1 '-allyl-2'-propenyl propynoate (18a) under the catalysis of PdCl_{2} in the presence of CuCl_{2} and LiCl in MeCN , we mainly obtained a monocyclic product: trans-(referring to the relative stereochemistry of β, γ-substituents) 19a in 59% yield (entry 1, Table 4). Model experiments showed that under similar conditions, the cyclization of unsubstituted propynoate (18b) mainly afforded trans-19b (entry 2, Table 4), while the cyclization of 3 -substituted propynoate 18 c yielded 19c purely in cis form (entry 3, Table 4). The dramatic results stimulated us to study the stereochemistry of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-\mathrm{CHCl}_{3}-\mathrm{HOAc}-\mathrm{CuBr}_{2}-\mathrm{LiBr}$-catalyzed

Table 4. Palladium-Templated Cyclization of 1^{\prime}-Substituted-2'-alkenyl 2-Alkynoates (18) ${ }^{a}$

1819

entry	R^{1}	R^{2}	X	18	cat.	time (h)	19^{b}	yield (\%) ${ }^{\text {c }}$	(cis:trans) ${ }^{\text {d }}$
1	H	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2}$	Cl	18a	A	45	$19 \mathrm{a}^{e}$	59	f
2	H	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	Cl	18b	A	40	$19{ }^{e}$	72	33:67
3	CH_{3}	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	Cl	18c	A	40	$19 \mathrm{c}^{\text {g }}$	80	>97:3
4	H	CH_{3}	Br	18d	B	10	$19 \mathrm{~d}^{\text {e }}$	92	33:67
5	H	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	Br	18b	B	10	$19{ }^{\text {e }}$	93	25:75
6	H	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$	Br	18e	B	15	19 f	82	22:78
7	H	i-C $\mathrm{C}_{5} \mathrm{H}_{11}$	Br	18f	B	15	19ge	82	24:76
8	H	i- $\mathrm{C}_{3} \mathrm{H}_{7}$	Br	18g	B	22	$19{ }^{e}$	85	<3:97
9	CH_{3}	CH_{3}	Br	18h	B	8	$19 \mathrm{i}{ }^{\text {g }}$	91	>97:3
10	CH_{3}	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	Br	18c	B	10	19j ${ }^{\text {g }}$	92	>97:3
11	CH_{3}	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	Br	18i	B	10	$19 \mathrm{k}^{\text {g }}$	94	>97:3
12	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}	Br	18j	B	10	1918	82	>97:3

A: A mixture of $18(1 \mathrm{mmol}), \mathrm{PdCl}_{2}(9 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{CuCl}_{2}(405 \mathrm{mg}, 3 \mathrm{mmol}), \mathrm{LiCl}(170 \mathrm{mg}, 4 \mathrm{mmol})$, and $\mathrm{MeCN}(10 \mathrm{~mL})$ was stirred at rt. B: A mixture of $18(1 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(52 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{CuBr}_{2}(896 \mathrm{mg}, 4 \mathrm{mmol}), \mathrm{LiBr}(348 \mathrm{mg}, 4 \mathrm{mmol})$, and HOAc was stirred at rt under Ar. ${ }^{b}$ The products were confirmed by ${ }^{1} \mathrm{H}$ NMR, IR, mass spectral data, and microanalysis. ${ }^{c}$ Isolated yield. ${ }^{d}$ The cis:trans ratio (referring to β, γ-substituents) was determined by ${ }^{1} \mathrm{H}$ NMR spectral data. ${ }^{e}$ The exocyclic double bond in 19 exhibits E-configuration. ${ }^{f}$ Only trans-19a was isolated. ${ }^{g}$ The exocyclic double bond in 19 exhibits Z-configuration.
cyclization of 1^{\prime}-substituted 2^{\prime}-propenyl 2 -alkynoates. The results are shown in Table 4 (entries 4-12). The cyclization of unsubstituted propynoates also mainly afforded trans-products (19d-h) (entries 4-8, Table 4) where the trans:cis ratio increased with the bulkiness of R^{2} (entry 8, Table 4) and substituted propynoates gave cis-products (entries 9-12, Table 4) with high selectivity. Although the 1,2 -stereoinduction leading to transselectivity has been reported in organolanthanide-mediated ${ }^{20}$ and Ziegler-Natta catalysts-induced ${ }^{21}$ cyclization of 1,5 -dienes and some other transition metal-catalyzed cyclizations, ${ }^{22,23}$ the cis-selectivity of the cyclization of substituted propynoates (entries 9-12, Table 4) under the same conditions is uncommon. Thus we can control the cis-trans stereochemistry of the β, γ-substituents by using substituted or unsubstituted propynoates as the starting materials.
The relative stereochemistry of β, γ-substituents in 19b and $19 \mathrm{~d}-\mathrm{h}$ was determined by ${ }^{3} \mathrm{~J}\left(\mathrm{H}_{\beta}-\mathrm{H}_{\gamma}\right)$ values and the chemical shifts of H_{γ} shown in Table 5. It has been reported ${ }^{24}$ that H_{γ} in a cis- β, γ-disubstituted α-methylene-γ-butyrolactone was at a lower field than that in the corresponding trans- β, γ-disubstituted isomers. In the cases when both trans- and cis-isomers were formed, H_{γ} in the minor isomers of $19 b$ and $19 d-g$ were found to be at a lower field than that in the corresponding major isomers. In addition, the ${ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{H}_{\gamma}\right)$ values of major isomers of $\mathbf{1 9 b}$ and $19 \mathbf{d}-\mathrm{g}$ were $3.8-4.2 \mathrm{~Hz}$, while ${ }^{3} J\left(\mathrm{H}_{\beta}-\right.$

[^4]Table 5. Significant ${ }^{1} \mathrm{H}$ NMR Data of α-(Haloalkylidene) $-\beta, \gamma$-disubstituted $-\gamma$-butyrolactones 19

γ-butyrolactone	cis		trans	
	$\begin{gathered} \delta \mathrm{H}_{\gamma} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} { }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{H}_{\gamma}\right) \\ (\mathrm{Hz}) \end{gathered}$	$\begin{gathered} \delta \mathrm{H}_{\gamma} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} 3^{3} J\left(\mathrm{H}_{\beta}-\mathrm{H}_{\gamma}\right) \\ (\mathrm{Hz}) \end{gathered}$
19a			4.50	4.0
19b	4.55	6.2	4.40	4.2
19c	4.50	6.2		
19d	4.66	6.0	4.32	4.0
19e	4.56	6.0	4.40	4.0
19 f	4.58	5.8	4.40	4.2
19g	4.56	6.1	4.40	4.1
19 h			4.35	3.8
19 i	4.60	6.0		
19j	4.52	6.2		
19k	4.56	6.0		
191	4.60	6.0		

H_{y}) of minor isomers were $5.8-6.1 \mathrm{~Hz}$. These ${ }^{1} \mathrm{H}$ NMR spectral data indicated that the major isomers of 19 b and 19d-g have β, γ-trans configurations. The chemical shifts of H_{γ} and the ${ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{H}_{\gamma}\right)$ values of 19 a and 19 h are in good agreement with those in the major isomers of $19 b$ and $19 \mathrm{~d}-\mathrm{g}$, showing that 19 a and 19 h were also in trans configuration. This assignment is consistent with our other reports. ${ }^{76}$

In the cases where only one isomer was isolated, the comparison of ${ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{H}_{\gamma}\right)$ values and the chemical shifts of H_{γ} of different isomers is impossible. However, the chemical shift of H_{γ} and the coupling constant ${ }^{3} J\left(\mathrm{H}_{\beta}-\right.$ H_{γ}) of 19i are in agreement with that of the minor isomers of $19 b$ and $19 \mathrm{~d}-\mathrm{g}$, suggesting a cis configuration (Table 5). The configuration of $19 i$ was finally solved by the appearance of strong NOE between H_{β} and H_{γ}, which indicated that 19 i was in cis form. 19 c and $19 \mathrm{j}-1$ were also assigned to be in cis form on the basis that in ${ }^{1} \mathrm{H}$ NMR spectra they have similar ${ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{H}_{\gamma}\right)$ values and chemical shifts of H_{γ} as 19 i (Table 5).

Scheme 5

Transition State for the Cyclization of $\mathbf{1 8}\left(\mathrm{R}^{1}=\mathrm{H}\right)$

Transition State for the Cyclization of $18\left(R^{1}=a l l y y\right)$

24
25
cis
1

These results indicated that R^{1} in 18 plays an important role in the stereochemistry of the present reaction, implying that the reaction might proceed via different transition states when R^{1} is H or alkyl. The stereochemical results of the cyclization of $\mathbf{1 8}$ could be rationalized on the basis of steric/conformational effects in a sevenmembered ring transition state for olefin insertion (Scheme 5). ${ }^{20,21}$ From unsubstituted propynoates ($\mathrm{R}^{1}=\mathrm{H}$), the transition state can adopt seven-membered cyclic pseudo chair forms 20 or 20^{\prime}, in which the palladium and the halogen atom are in cis position. In order to insert the $\mathrm{C}=\mathrm{C}$ double bond into the $\mathrm{C}-\mathrm{Pd}$ bond, these two bonds should be parallel and coplanar to each other. Thus, the nonbonded interactions should destabilize the sterically unfavorable conformation $\mathbf{2 0}^{\prime}$, in which R^{2} is in axial position, and favor the conformation 20 to preferentially give trans products. Additionally, the influence of R^{2} will be more important as R^{2} becomes bulkier, which is also observed in our study.
While from 3 -substituted propynoates, the palladium and the halogen atom in the vinyl palladium moiety are trans to each other, the stereoelectronic effect ${ }^{25}$ between the vinylic bromine atom and the lactone oxygen atom
(25) Deslongchamps, P. Stereoelectronic Effect in Organic Chemistry; Pergamon Press: Oxford, 1983.
may destabilize the seven-membered cyclic chair transition state 22. It has been reported that there exists small energy difference between chair and boat conformations in seven-membered carbocyclic compounds. ${ }^{26}$ In the study of a palladium-catalyzed polyene cyclization of dienylaryl iodides, Overman et al. proposed a sevenmembered pseudoboat transition state to provide a rational for the observed stereoselectivity. ${ }^{27}$ Thus, a transition state of seven-membered pseudoboat conformation such as 24 or 24^{\prime} might also work in our case. In $\mathbf{2 4}$ ', the R^{2} group is in pseudoaxial position; consequently, the steric interaction between the vinylic bromine atom and R^{2} makes this transition state unfavorable. Thus, the transition state 24 in which R^{2} is in the favorable pseudoequatorial position predominates, and this gives a reasonable explanation for the observed stereoselectivity of the cyclization.
Based on the mechanism and stereochemical outcome of the cyclization, a facile route to bicyclic lactone from acyclic precursors was developed, which was published as a communication. ${ }^{28}$
Further Elaborations. There are two bromine atoms in the synthesized lactone molecule. We then studied some transformations of the bromine atoms into other functional groups. According to Dibble's method, ${ }^{29}$ refluxing $19 f$ with CaCO_{3} in dioxane/water (1:1) for 30 h , we obtained α-(bromomethylene)- β-(hydroxymethyl)- γ butyrolactone (26) in good yield (eq 2). If CaCO_{3} was replaced by NaHCO_{3}, the lactone ring would be perfectly opened. Using Heck' ${ }^{30}$ and Overman's ${ }^{27}$ methods, we succeeded in the further elaboration of the vinyl bromide function in 26 under the catalysis of palladium to obtain 27 (eq 3) and 28 (eq 4), respectively.

Synthesis of (\pm)-A-factor. A-factor (29) is an inducer of the biosynthesis of Streptomycin in inactive mutants

[^5]
Scheme 6

29
(土)-A-factor

of Streopmyces griseus. ${ }^{31}$ Khokhlov et al. proposed the gross structure of A-factor to be $29,{ }^{32}$ which was later confirmed by a synthesis of its racemic form. ${ }^{33}$ Recently, the synthesis of optically active A-factor had also been reported. ${ }^{34}$ On considering the fact that the lactone molecule 3 possesses two bromine atoms, A-factor was conveniently synthesized from the cyclization product $\mathbf{3 e}$ by two simple transformations: alkaline hydrolysis of the bromomethyl unit gave β-(hydroxymethyl) γ-lactone 30, and then treatment of 30 with diethylamine ${ }^{35}$ transformed the vinyl bromide to ketone function to afford (\pm)-A-factor (Scheme 6). This concise synthesis, compared to the reported ones, furthermore illustrated the effectiveness of the transition metal-catalyzed ring construction method.

In summary, we developed a catalytic system to prepare bromo-functionalized α-alkylidene- γ-butyrolactone derivatives from 2 'alkenyl 2 -alkynoates which are suitable for further elaboration in synthesis. In studying the stereochemistry of the cyclization of 1^{\prime}-substituted 2 -alkenyl 2 -alkynoates, we found that the stereoselectivity was highly dependent on the acetylenic substituent in the substrate: thus, unsubstituted propynoates gave trans-selectivity for the β, γ-substituents in the cyclic product while substituted propynoates gave cis-selectivity. We also studied the transformation of the bromine atoms in the cyclization products, and as an illustration, (\pm)-A-factor was synthesized efficiently from easily available acyclic precursor. Further study of the application of this cyclization reaction is now under way.

Experimental Section

Materials. The catalysts $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3},{ }^{36} \mathrm{PdBr}_{2}(\mathrm{PhCN})_{2},{ }^{37}$ $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2},{ }^{38}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ were prepared by literature methods. $\mathrm{CuCl}_{2}, \mathrm{LiCl}, \mathrm{CuBr}_{2}$, and LiBr were dried at $120^{\circ} \mathrm{C}$

[^6]under reduced pressure for 4 h . MeCN was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ under N_{2}. HOAc was refluxed with KMnO_{4} for $2-6 \mathrm{~h}$ and then distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. HMPA was distilled from CaH_{2} under reduced pressure ($99{ }^{\circ} \mathrm{C} / 6 \mathrm{mmHg}$). Allyl 2-propynoate (1a), 2-butynoate (1b), and 2-heptynoate (1d), (E)- and (Z)-3'-phenyl-2'-propenyl 2-butynoates ($(E)-1 \mathrm{~g},(Z)-1 \mathrm{~g})$ were also prepared by reported methods. ${ }^{8 a}$ The analytical samples were further purified by Kugelrohr distillation with the given oven temperature (ot).

Synthesis of 8-Methyl-2-nonynoic Acid (31). 8-Methyl2 -nonyoic acid was prepared ${ }^{39}$ from lithium 7 -methyl-1-octynylide and carbon dioxide in 63% yield: $\mathrm{bp} 140-2^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz} / \mathrm{CCl}_{4}\right) \delta 11.50(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.7-1.3(\mathrm{~m}, 7 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$; IR (neat): $3200-2500$ (band), 2215, 1700, 1470, 1380, $1280 \mathrm{~cm}^{-1}$; MS m/e (\%): $169\left(\mathrm{M}^{+}+1\right)(47), 168\left(\mathrm{M}^{+}\right)(2.5), 126(17), 109(23), 77$ (8.6), 57 (100). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 71.39; $\mathrm{H}, 9.58$. Found: C, 70.81; H, 9.81. HRMS: Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$: 168.1150. Found: 168.1119.

Synthesis of Allyl 2-Hexynoate (1c). To a solution of 2-hexynoic acid ($1.12 \mathrm{~g}, 10 \mathrm{mmol}$) in HMPA (10 mL) was added in portions powdered anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.17 \mathrm{~g}, 11 \mathrm{mmol})$. After an additional stirring at rt for 1 h , allyl bromide $(1.45 \mathrm{~g}$, $12 \mathrm{mmol})$ was added. The reaction was stirred at rt for 20 h . Water $(10 \mathrm{~mL})$ was then added, and the mixture was extracted with ether ($3 \times 25 \mathrm{~mL}$). The extracts were dried over MgSO_{4}, and the product $\mathbf{1 c}$ was purified by chromatography on silica gel using petroleum ether/ethyl acetate (15:1) as the eluent: yield $1.40 \mathrm{~g}(92 \%)$; ot $80^{\circ} \mathrm{C} / 10 \mathrm{mmHg} ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz} / \mathrm{CCl}_{4}\right)$ $\delta 6.0-5.6(\mathrm{~m}, 1 \mathrm{H}), 5.3-5.0(\mathrm{~m}, 2 \mathrm{H}), 4.6(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.3$ $(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 1.4(\mathrm{~m}, 2 \mathrm{H}), 0.9(\mathrm{t}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) $3100,2250,1720,1650,1250 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{e} 153\left(\mathrm{M}^{+}+\right.$ 1), 137, 108, $96,67,57,43,41$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$: C, $71.03 ; \mathrm{H}, 7.95$. Found: C, $70.76 ; \mathrm{H}, 8.22$. The following compounds were prepared similarly.

Allyl 8-methyl-2-nonynoate (1e): yield 98%; ot $75{ }^{\circ} \mathrm{C} / 1$ mmHg ; ${ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz} / \mathrm{CCl}_{4}$) $\delta 6.0-5.6(\mathrm{~m}, 1 \mathrm{H}), 5.3-5.0$ $(\mathrm{m}, 2 \mathrm{H}), 4.5(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.3(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 1.7-1.2$ (m, 7 H), 0.9 (d, $J=7 \mathrm{~Hz}, 6 \mathrm{H}$) ppm; IR (neat) 2250, 1720, 1650 , 1470, 1240, 1070, $740 \mathrm{~cm}^{-1}$; MS m/e $209\left(\mathrm{M}^{+}+1\right.$), 151, 137, 123, 107, 67, 55. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 74.96; $\mathrm{H}, 9.68$. Found: C, 74.78; H, 9.98.

Allyl 2-undecynoate (1f): yield 95%; ot $80^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz} / \mathrm{CCl}_{4}\right) \delta 6.0-5.6(\mathrm{~m}, 1 \mathrm{H}), 5.3-4.9(\mathrm{~m}, 2 \mathrm{H})$, $4.4(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 2.1(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 1.4-1.0(\mathrm{~m}, 12 \mathrm{H})$, $0.8(\mathrm{t}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) $3080,2220,1720,1640$, $1200,760 \mathrm{~cm}^{-1}$; MS m/e $222\left(\mathrm{M}^{+}\right), 180,165,149,137,57,55$, 43 , 41. Anal. Caled for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 75.63; H,9.97. Found: C, 76.02; H, 10.32 .

Tetrabromination of Allyl 2-Propynoate (1a). To a solution of $1 \mathbf{a}(110 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{CuBr}_{2}(896 \mathrm{mg}, 4 \mathrm{mmol})$, and $\mathrm{LiBr}(348 \mathrm{mg}, 4 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ was added $\mathrm{PdBr}_{2}-$ $(\mathrm{PhCN})_{2}(23.6 \mathrm{mg}, 0.05 \mathrm{mmol})$, and the reaction was monitored by TLC (eluent: petroleum ether/ethyl acetate $=10 / 1$). After the reaction was complete, ether (80 mL) was added, and the mixture was washed with water $(3 \times 5 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Preparative TLC on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1$) afforded the product 4a: yield $150 \mathrm{mg}(35 \%)$, oil; ${ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz} / \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=5 \mathrm{~Hz}$, 2 H), $4.35(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$; IR (neat) 1730 , 1280, 1200, 1100, 830, $710 \mathrm{~cm}^{-1}$; MS m/e (\%) $432\left[\mathrm{M}^{+}\left(3^{81} \mathrm{Br}\right.\right.$, $\left.\left.{ }^{79} \mathrm{Br}\right)\right](0.91), 430\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}, 2^{79} \mathrm{Br}\right)\right](1.39), 428\left[\mathrm{M}^{+}\left(8^{81} \mathrm{Br}, 3^{79} \mathrm{Br}\right)\right]$ (0.86), $426\left[\mathrm{M}^{+}\left(4^{79} \mathrm{Br}\right)\right](0.51), 351$ (100). Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{2}$: C, 16.77; H, 1.41. Found: C, 17.15; H, 1.28 .

Effect of Catalyst. General Procedure. To a solution of $\mathbf{1 b}$ ($124 \mathrm{mg}, 1 \mathrm{mmol}$), CuBr_{2} ($896 \mathrm{mg}, 4 \mathrm{mmol}$), and LiBr ($348 \mathrm{mg}, 4 \mathrm{mmol}$) in HOAc (10 mL) was added the catalyst (0.05 mmol) under argon. The mixture was stirred at rt with monitoring by TLC on silica gel. After the reaction was over, ether $(80 \mathrm{~mL})$ was added. The mixture was washed with water ($3 \times 5 \mathrm{~mL}$) and dried over MgSO_{4}. Finally, the ether solution was concentrated and the residue was submitted to prepara-

[^7]tive TLC on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1$) to give the products $\mathbf{3 b}$ and $\mathbf{4 b}$ (Table 1).

Effect of LiBr. General Procedure. To a stirred solution of 1 b ($124 \mathrm{mg}, 1 \mathrm{mmol}$), CuBr_{2} ($896 \mathrm{mg}, 4 \mathrm{mmol}$), and Pd_{2-} (dba) $)_{3} \mathrm{CHCl}_{3}(52 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{HOAc}(10 \mathrm{~mL})$ was added LiBr at rt under argon. The reaction was monitored by TLC on silica gel. After the reaction was over, it was similarly worked up to give the products.
α-(Z)-(1^{\prime}-Bromoethylidene)- β-(bromomethyl)- γ-butyrolactone ((Z)-3b): mp $52-54{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) δ $4.36(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$ ppm; IR (Nujol) 1760, 1650, 1470, 1380, 1240, 770, 680, 640 $\mathrm{cm}^{-1} ; \mathrm{MS}$ m/e (\%) $287\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](61), 285\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)\right.$ $+1](100), 283\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](58), 205(63), 203(59), 191$ (7.9), 189 (8.3), 163, 161, 147, 145, 95, 93, 77; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 29.61; H, 2.84. Found: C, 29.48; H, 2.71.
α-(E)-($\mathbf{1}^{\prime}$-Bromoethylidene)- $\boldsymbol{\beta}$-(bromomethyl)- γ-butyrolactone ($(\boldsymbol{E})-3 \mathrm{Bb})$: ot $120{ }^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\left.\mathrm{CDCl}_{3}\right) \delta 4.40(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.50(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ IR (neat) 1760, 1650, 1480, 1370, 1220, 800, 770, 740, 640, $560 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / e(\%): 287\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](22), 285\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right.\right.$, $\left.\left.{ }^{79} \mathrm{Br}\right)+1\right](51), 283\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](33), 205(100), 203(98)$, 191 (25), 189 (28), 164 (34), 161 (39), 147, 145, 109, 95, 77. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 29.61; H, 2.84. Found: C, 29.59; H, 2.48.
$\mathbf{2}^{\prime}, 3^{\prime}$-Dibromopropyl 2,3-dibromo-2(E)-butenoate (4b): oil; ${ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz} / \mathrm{CDCl}_{3}\right) \delta 4.6(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 4.3$ (m, 1 H), 3.8 (d, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.5 (s, 3 H) ppm; IR (neat) 1760 , $1650,1380,1230,690 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{e}(\%) 448\left[\mathrm{M}^{+}\left(4^{81} \mathrm{Br}\right)\right](4.2)$, $446\left[\mathrm{M}^{+}\left(3^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)\right](16), 444\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}, 2^{79} \mathrm{Br}\right)\right](20), 442$ $\left[\mathrm{M}^{+}\left(81 \mathrm{Br}, 3^{79} \mathrm{Br}\right)\right](2.1), 440\left[\mathrm{M}^{+}\left(4^{79} \mathrm{Br}\right)\right](2.4), 367$ (3.9), 365 (12), 363 (12), 361 (3.6), 229 (48), 227 (100). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8}-$ $\mathrm{Br}_{4} \mathrm{O}_{2}$: C, 18.95; H, 1.82. Found: C, 18.92; H, 1.81.

Cyclization of 2'Alkenyl 2-Alkynoate (1). Typical Procedure. To a solution of $1 \mathbf{a}(110 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{CuBr}_{2}(896$ $\mathrm{mg}, 4 \mathrm{mmol}$), and $\mathrm{LiBr}(348 \mathrm{mg}, 4 \mathrm{mmol})$ in $\mathrm{HOAc}(10 \mathrm{~mL})$ was added $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(52 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction was then stirred at rt under Ar and monitored by TLC (eluent: petroleum ether/ethyl acetate $=10 / 1$). After the reaction was complete, ether (80 mL) was added and then the mixture was washed with water ($3 \times 5 \mathrm{~mL}$). The ether layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The yellow residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1$) giving $(E)-3 a(230 \mathrm{mg}$, 85%): $\mathrm{mp} 86-88{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{~s}, 1 \mathrm{H})$, 4.50 (dd, $J=10,7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=10,3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ (m, 3H) ppm; IR (Nujol) 3080, 1760, 1650, 1460, 1240, 1220, $1140,770,660,620 \mathrm{~cm}^{-1}$; MS m/e (\%) $272\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)\right]$ (16), $\left.270\left[\mathrm{M}^{+}+{ }^{81} \mathrm{Br},{ }^{, 9} \mathrm{Br}\right)\right](33), 268\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)\right](16), 191$ (23), 189 (24), 177 (21), 175 (20), 161 (100), 159 (84), 147 (34), 65, 51. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, $26.70 ; \mathrm{H}, 2.24$. Found: C, $26.75 ; \mathrm{H}, 2.05$. The following compounds were prepared similarly.
α-(Z)-(1'-Bromobutylidene)- β-(bromomethyl)- γ-butyrolactone ((Z)-3c): yield 96%; ot $120-125^{\circ} \mathrm{C} / 1 \mathrm{mmHg} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz} / \mathrm{CDCl}_{3}\right) \delta 4.38(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=10$, $6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.78 (m, 2H), 1.00 (t, $J=7 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; IR (neat) $1760,1640,1380,1220,910,810,780,760,670 \mathrm{~cm}^{-1}$; MS m/e (\%): $315\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](56), 313\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](100)$, $311\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](43), 233,231,219,217,121,119,93,91$. Anal. Caled for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 34.64; H, 3.88. Found: C, 34.52; H, 3.66.
$\alpha-(Z)-\left(1^{\prime}-\right.$ Bromopentylidene $)-\beta$-(bromomethyl)- γ-butyrolactone ($(Z)-3 d)$ y yield 86%; oil; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 4.36(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (dd, $J=10,5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~m}$, $1 \mathrm{H}), 3.40(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~m}$, 2 H), $1.40(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) 1760 , $1640,1470,1380,1200,940,740,680,640,540 \mathrm{~cm}^{-1} ;$ MS m/e (\%) $329\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](66), 327\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](100)$, $325\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](65), 247(63), 245(45), 93,65,51$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 36.84; H, 4.33. Found: C, 37.19; H, 4.42 .
α-(E)-($\boldsymbol{1}^{\prime}$-Bromopentylidene) $\boldsymbol{\beta}$-(bromomethyl)- $\boldsymbol{\gamma}$-butyrolactone ((E)-3d): yield 20% (Table 2, entry 5); oil; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz} / \mathrm{CDCl}_{3}\right) \delta 4.34(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~m}, 3 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H})$,
$1.56(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$ IR (neat) $1760,1640,1460,1220,900,730,690,630,540 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / e$ (\%) $329(58), 327\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](100), 325\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+\right.$ 1] (52), 247 (63), 245 (45), 204, 202, 63, 51, 42. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 36.84; H, 4.33. Found: C, 37.19; H, 4.42 .
α-(Z)-(1^{\prime}-Bromo- 6^{\prime}-methylheptylidene) $-\beta$-(bromomethyl)-γ-butyrolactone: (Z)-3e: yield 97%; oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} /$ CDCl_{3}) $\delta 4.35$ (dd, $J=9.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.26 (dd, $J=9.5,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70-3.40(\mathrm{~m}, 3 \mathrm{H}), 2.7(\mathrm{~m}, 2 \mathrm{H}), 1.8-1.2(\mathrm{~m}, 7 \mathrm{H}), 0.95$ (d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$) ppm; IR (neat) $1765,1640,1220,1130$, $640 \mathrm{~cm}^{-1}$; MS m/e (\%) $371\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](2.8), 369\left[\mathrm{M}^{+}\left(8{ }^{81} \mathrm{Br}\right.\right.$, $\left.\left.{ }^{79} \mathrm{Br}\right)+1\right](5.7), 367\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](3.0), 287(100), 193(85)$, 191 (43), 109 (47); Anal. Caled for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2}: \mathrm{C}, 42.42 ; \mathrm{H}$, 5.48. Found: C, 42.41; H, 5.48.
α-(Z)-(1'-Bromononylidene)- $\boldsymbol{\beta}$-(bromomethyl) $\boldsymbol{\gamma}$-butyrolactone ((Z)-3f): yield 81%; oil; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 4.40(\mathrm{dd}, J=10,1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=10,6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ $(\mathrm{m}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=3 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~m}$, $10 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) 1770 , 1640, 1220, $900,770,700,680,650,540 \mathrm{~cm}^{-1}$; MS m/e (\%) 385 $\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](48), 383\left[\mathrm{M}^{+}\left(81 \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](100), 381$ $\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](39), 303(63), 301(54), 285,283,219,191$, $109,107,81$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{O}_{2}: \mathrm{C}, 44.00 ; \mathrm{H}, 5.80$. Found: C, 44.28; H, 5.86 .
α-(Z)-(1^{\prime}-Bromoethylidene) β-(phenylbromomethyl)- γ butyrolactone ($(Z)-3 g)$: yield 91%; mp 100-2 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} / \mathrm{CDCl}_{3}\right) \delta 7.55-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.06(\mathrm{~d}, J=7.60 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{~d}, J=9.72 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=9.72,6.30 \mathrm{~Hz}$, 1 H), 3.90 (dd, $J=7.60,6.30 \mathrm{~Hz}, 1 \mathrm{H}$), 2.65 (s, 3H) ppm; IR (Nujol) $1760,1650,1220,760,700,680,540 \mathrm{~cm}^{-1}$; MS m/e (\%) $363\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](23), 361\left[\mathrm{M}^{+}\left(81 \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](44), 359$ $\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](21), 281(14), 279(13), 171(92), 169$ (100), 142 (19), 141 (24), 115, 91, 77. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 43.37; H, 3.36. Found: C, 43.08; H, 3.76.
$\alpha-(Z)-\left(1^{\prime}-\right.$ Bromoethylidene $)-\beta$-(phenylbromomethyl) $-\gamma$ butyrolactone ($\left.(Z)-3 g^{\prime}\right)$: yield $89 \% ;$ mp $119-20^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} / \mathrm{CDCl}_{3}\right) \delta 7.52-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.92(\mathrm{~d}, J=9.07 \mathrm{~Hz}$, $1 \mathrm{H}), 4.72(\mathrm{dd}, J=9.60,0.72 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=9.60,6.00$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.07,6.00 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; IR (Nujol) $1760,1640,1200,750,690,660,550,480 \mathrm{~cm}^{-1}$; MS $m / e(\%) 363\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](2.4), 361\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](4.4)$, $359\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](2.1), 281(18), 279$ (7.3), 171 (94), 169 (100), 142 (14), 141 (17), 115, 91, 77. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12}-$ $\mathrm{Br}_{2} \mathrm{O}_{2}$: C, 43.37; H, 3.36. Found: C, 43.05 ; H, 3.32.
Cyclization of 1a in the Presence of CCl_{4}. To a solution of $\mathbf{1 a}(110 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{CuBr}_{2}(896 \mathrm{mg}, 4 \mathrm{mmol}), \mathrm{LiBr}(348$ $\mathrm{mg}, 4 \mathrm{mmol}$), and $\mathrm{CCl}_{4}(7.1 \mathrm{~g}, 50 \mathrm{mmol})$ in $\mathrm{HOAc}(10 \mathrm{~mL})$ was added $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(52 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction was then stirred at rt under Ar and monitored by TLC. When the reaction was complete, ether $(80 \mathrm{~mL})$ was added and then the mixture was washed with water ($3 \times 5 \mathrm{~mL}$). The ether layer was dried (MgSO_{4}), concentrated and submitted to preparative TLC on silica gel (eluent: petroleum ether/ethyl acetate $=10$ / 1) to give the product $2 \mathrm{a}(240 \mathrm{mg}, 90 \%)$.

Preparation of 4^{\prime}-(Allyloxy)-2'(Z)-butenyl 2-Butynoate (8). ${ }^{40} \mathrm{To}$ a solution of 2 -butynoic acid ($0.84 \mathrm{~g}, 10 \mathrm{mmol}$) and 4-(allyloxy)-2-buten-1-ol ($1.54 \mathrm{~g}, 12 \mathrm{mmol}$) in ether (10 mL) was dropwise added the solution of DCC ($2.47 \mathrm{~g}, 12 \mathrm{mmol}$) in ether (20 mL) at $0{ }^{\circ} \mathrm{C}$. DMAP (4 - $(N, N$-dimethylamino)pyridine) ($186 \mathrm{mg}, 1 \mathrm{mmol}$) dissolved in ether (10 mL) was subsequently added at $0^{\circ} \mathrm{C}$. After the addition, the mixture was stirred at rt for 20 h . The mixture was filtered and the filter cake was washed with small portions of ether. The ether solution was concentrated, and the crude product was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=15 / 1$). The product 8 was obtained (1.60 $\mathrm{g}, 82 \%$) : ot $90^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz} / \mathrm{CCl}_{4}$) $\delta 6.1-5.5$ $(\mathrm{m}, 3 \mathrm{H}), 5.3-4.9(\mathrm{~m}, 2 \mathrm{H}), 4.6(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.0(\mathrm{~d}, J=$ $5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.9(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 1.9$ (s, 3 H) ppm; IR (neat) 3050 , $2200,1720,1630,1250,990,910 \mathrm{~cm}^{-1} ;$ MS $m / e ~ 194\left(\mathrm{M}^{+}\right), 179$, 153, 122, $110,73,67,57,42$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 68.02; H, 7.27. Found: C, 68.40; H, 7.38 .

[^8]$\mathbf{P d C l}_{\mathbf{2}}-\mathbf{C u C l}_{\mathbf{2}}-\mathbf{L i C l}$-Catalyzed Cyclization of 8. The procedure was similar to the general method.

10: yield 66%; oil; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 4.38(\mathrm{~m}, 2 \mathrm{H})$, $4.16(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.50(\mathrm{~m}, 5 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;$ IR (neat) $1760,1650,1380$, 1140, $780,690 \mathrm{~cm}^{-1}$; MS m/e (\%): $269\left[\mathrm{M}^{+}\left(2^{37} \mathrm{Cl}\right)+1\right](2.4)$, $267\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right)+1\right](13), 265\left[\mathrm{M}^{+}\left(2^{35} \mathrm{Cl}\right)+1\right](23), 231(6.2)$, 229 (20), 191 (6.4), 189 (18), 173 (3.3), 171 (11), 147 (16), 145 (34), 81 (100). Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}$: $\mathrm{C}, 49.83 ; \mathrm{H}, 5.32$. Found: C, 50.19; H, 4.97.

11: yield 22%; oil; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 6.10-5.60$ $(\mathrm{m}, 1 \mathrm{H}), 5.20-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.40-3.90(\mathrm{~m}, 7 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) $3060,1760,1640,1470,1210,990$, $920,810,760 \mathrm{~cm}^{-1}$; MS m/e (\%): $269\left[\mathrm{M}^{+}\left(2^{37} \mathrm{Cl}\right)+1\right](1.3)$, $\left.267{ }^{[1} \mathrm{M}^{+}\left({ }^{37} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right)+1\right](7.6), 265\left[\mathrm{M}^{+}\left(2^{35} \mathrm{Cl}\right)+1\right](11), 231$ (3.2), 229 (10), 210 (3.5), 208 (16), 206 (26), 147 (9.9), 145 (23), 95 (100). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3}$: C, $49.83 ; \mathrm{H}, 5.32$. Found: C, 49.95; H, 5.20 .
$\mathbf{P d}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}-\mathbf{H O A C}-\mathrm{CuBr}_{2}-\mathrm{LiBr}$-Catalyzed $\mathbf{C y}$ clization of 8. The procedure was the same as the general method.

12: yield 50%; oil; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 6.2-5.6(\mathrm{~m}$, $1 \mathrm{H}), 5.4-5.0(\mathrm{~m}, 2 \mathrm{H}), 4.3-3.9(\mathrm{~m}, 5 \mathrm{H}), 3.5(\mathrm{~m}, 3 \mathrm{H}), 2.6(\mathrm{~s}, 3 \mathrm{H})$ ppm; IR (neat) $3050,1770,1640,1380,1230,920,690 \mathrm{~cm}^{-1}$; MS $m / e(\%) 357\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](7.0), 355\left[\mathrm{M}^{+}\left(81 \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right]$ (11), $353\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](7.1), 191$ (5.6), 189 (6.0), 163 (100). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3}$: C, 37.32; H, 3.99; Found: C, 37.22; H, 4.14.

13: yield 23%; oil; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 4.24(\mathrm{~m}, 2 \mathrm{H})$, $3.92-3.74(\mathrm{~m}, 8 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) $1770,1640,1380,1210,770,690,510 \mathrm{~cm}^{-1}$; MS m/e (\%) 519 $\left[\mathrm{M}^{+}\left(4^{31} \mathrm{Br}\right)+1\right](6.6), 517\left[\mathrm{M}^{+}\left(3^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](27), 515$ $\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}, 2^{79} \mathrm{Br}\right)+1\right](46), 513\left[\mathrm{M}^{+}\left(81 \mathrm{Br}, 3^{79} \mathrm{Br}\right)+1\right](30), 511$ $\left[\mathrm{M}^{+}\left(4^{79} \mathrm{Br}\right)+1\right](8.4), 437(0.8), 435(2.4), 433(2.3), 431(0.8)$, 357 (1.5), 355 (3.6), 353 (3.0), 299 (4.1), 297 (8.8), 295 (4.4), 217 (12), 215 (12), 192 (57), 190 (61), 163 (98), 161 (100). Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Br}_{4} \mathrm{O}_{3}$: $\mathrm{C}, 25.71 ; \mathrm{H}, 2.75$. Found: C, 25.80 ; H, 2.80 .

Preparation of $\mathbf{1}^{\prime}$-Substituted 2'-Alkenyl 2-Alkynoates (18). The procedure was similar to the preparation of compound 8 .
1^{\prime}-Allyl-2'-propenyl 2-propynoate (18a): yield 45\%; ot 66 ${ }^{\circ} \mathrm{C} / 10 \mathrm{mmHg} ;{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz} / \mathrm{CCl}_{4}$) $\delta 6.0-4.9(\mathrm{~m}, 7 \mathrm{H}), 2.7$ (s, 1 H), $2.3(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$) ppm ; IR (neat) $3250,3050,2100$, $1710,1640,1220,990,920,760 \mathrm{~cm}^{-1} ;$ MS m/e $151\left(\mathrm{M}^{+}+1\right)$, $109,82,54,42$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}: \mathrm{C}, 71.98 ; \mathrm{H}, 6.71$. Found: C, 71.99 ; H, 7.07 .
$\mathbf{1}^{\prime}$-Propyl-2'-propenyl 2-propynoate (18b): yield 52%; ot $70^{\circ} \mathrm{C} / 6 \mathrm{mmHg} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz} / \mathrm{CCl}_{4}\right) \delta 6.0-5.5(\mathrm{~m}, 1 \mathrm{H})$, $5.3-5.0(\mathrm{~m}, 3 \mathrm{H}), 2.7(\mathrm{~s}, 1 \mathrm{H}), 1.5-1.2(\mathrm{~m}, 4 \mathrm{H}), 0.9(\mathrm{t}, J=6 \mathrm{~Hz}$, 3H) ppm; IR (neat) $3300,2100,1710,1640,1230,990,760$ cm^{-1}; MS m/e $152\left(\mathrm{M}^{+}\right), 109,82,68,55,43$. Anal. Caled for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$: C, $71.03 ; \mathrm{H}, 7.95$. Found: C, $71.15 ; \mathrm{H}, 7.56$.

1'-Propyl-2'-propenyl 2-butynoate (18c): yield 88%; ot $80-6{ }^{\circ} \mathrm{C} / 10 \mathrm{mmHg} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz} / \mathrm{CCl}_{4}\right) \delta 6.0-5.5(\mathrm{~m}, 1 \mathrm{H})$, $5.3-5.0(\mathrm{~m}, 3 \mathrm{H}), 1.9(\mathrm{~s}, 3 \mathrm{H}), 1.6-1.2(\mathrm{~m}, 4 \mathrm{H}), 0.9(\mathrm{t}, J=6 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm}$; IR (neat): $3080,2200,1710,1250,990,930,750$ cm^{-1}; MS $m / e 165\left(\mathrm{M}^{+}-1\right), 151,122,95,68,55,43$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 72.26; H, 8.49. Found: C, 72.64; H, 8.89.
1^{\prime}-Methyl-2'-propenyl 2-propynoate (18d): yield 56%; ot $70-80{ }^{\circ} \mathrm{C} / 10 \mathrm{mmHg} ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz} / \mathrm{CCl}_{4}\right) \delta 6.1-5.6(\mathrm{~m}$, $1 \mathrm{H}), 5.3-5.0(\mathrm{~m}, 3 \mathrm{H}), 2.7(\mathrm{~s}, 1 \mathrm{H}), 1.3(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) $3350,3080,2220,1710,1640,1260,990,930,750$ cm^{-1}; MS $m / e 125\left(\mathrm{M}^{+}+1\right), 97,82,69,55,42$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$: C, 67.73; H, 6.50. Found: C, 67.57 ; H, 6.80 .
1^{\prime}-Pentyl-2'-propenyl 2 -propynoate (18e): yield 52%; ot $75{ }^{\circ} \mathrm{C} / 5 \mathrm{mmHg} ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}^{2} \mathrm{CCl}_{4}\right) \delta 6.1-5.5(\mathrm{~m}, 1 \mathrm{H})$, $5.35-5.05(\mathrm{~m}, 3 \mathrm{H}), 2.8(\mathrm{~s}, 1 \mathrm{H}), 1.6-1.1(\mathrm{~m}, 8 \mathrm{H}), 0.9(\mathrm{t}, J=$ $6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) $3300,2200,1720,1230,990,910,760$ $\mathrm{cm}^{-1} ; \mathrm{MS} m / e 181\left(\mathrm{M}^{+}+1\right), 151,137,111,95,71,69,57,53$, 43. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 73.30 ; $\mathrm{H}, 8.95$. Found: C, 73.25; H, 9.02 .
1^{\prime}-($3^{\prime \prime}$-Methylbutyl)-2'-propenyl 2-propynoate (18f): yield 42%; ot $75-80^{\circ} \mathrm{C} / 5 \mathrm{mmHg} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz} / \mathrm{CCl}_{4}\right) \delta 6.1-5.5$ $(\mathrm{m}, 1 \mathrm{H}), 5.3-4.9(\mathrm{~m}, 3 \mathrm{H}), 2.7(\mathrm{~s}, 1 \mathrm{H}), 1.5-1.0(\mathrm{~m}, 5 \mathrm{H}), 0.85(\mathrm{~d}$,
$J=6 \mathrm{~Hz}, 6 \mathrm{H}$) ppm; IR (neat) $3250,3080,2100,1720,1640$, $1230,990,930,760 \mathrm{~cm}^{-1}$; MS m/e $181\left(\mathrm{M}^{+}+1\right), 111,95,71$, $69,57,53,43$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: C, $73.30 ; \mathrm{H}, 8.95$. Found: C, 73.16; H, 8.90.
1^{\prime}-Isopropyl-2'-propenyl 2-propynoate ($\mathbf{1 8 g}$): yield 55%; ot $70^{\circ} \mathrm{C} / 8 \mathrm{mmHg},{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz} / \mathrm{CCl}_{4}\right) \delta 6.0-5.0(\mathrm{~m}, 3 \mathrm{H})$, $4.0(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 2.8(\mathrm{~s}, 1 \mathrm{H}), 1.8(\mathrm{~m}, 1 \mathrm{H}), 0.9(\mathrm{~d}, J=6 \mathrm{~Hz}$, 6 H) ppm; IR (neat) $3250,2100,1710,1220 \mathrm{~cm}^{-1}$; MS m/e 153 $\left(\mathrm{M}^{+}+1\right), 109,83,69,55,43$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$: C , 71.03; H, 7.95. Found: C, 71.28; H, 7.64.
1^{\prime}-Methyl-2'-propenyl 2-butynoate ($\mathbf{1 8 h}$): yield 76%; bp $168-70^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz} / \mathrm{CCl}_{4}\right) \delta 6.2-5.6(\mathrm{~m}, 1 \mathrm{H}), 5.3-$ $5.0(\mathrm{~m}, 2 \mathrm{H}), 4.5(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 2.0(\mathrm{~s}, 3 \mathrm{H}), 1.3(\mathrm{~d}, J=7 \mathrm{~Hz}$, 3 H) ppm; IR (neat) $3080,2250,1720,1640,1470,1260,990$, $930,760 \mathrm{~cm}^{-1} ; \mathrm{MS} m / e 138\left(\mathrm{M}^{+}\right), 123,95,72,67,55,43$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: C, $69.55 ; \mathrm{H}, 7.30$. Found: $\mathrm{C}, 69.82 ; \mathrm{H}, 6.90$.
$\mathbf{1}^{\prime}$-Butyl-2'-propenyl 2-butynoate (18i): yield 89%; ot 90 ${ }^{\circ} \mathrm{C} / 8 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz} / \mathrm{CCl}_{4}\right) \delta 6.1-5.7(\mathrm{~m}, 1 \mathrm{H}), 5.4-$ $5.1(\mathrm{~m}, 2 \mathrm{H}), 4.1(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.0(\mathrm{~s}, 3 \mathrm{H}), 1.7-1.2(\mathrm{~m}, 6 \mathrm{H})$, $0.9(t, J=6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) $3080,2200,1710,1640$, $1250,990,920,750 \mathrm{~cm}^{-1}$; MS m/e $179\left(\mathrm{M}^{+}-1\right), 165,151,137$, 123, $113,97,68,55$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: $\mathrm{C}, 38.85$; H , 4.74. Found: C, 38.96 ; H, 4.64.

1'-Methyl-2'-propenyl 2-heptynoate ($\mathbf{1 8 j}$): yield 76%; ot $75{ }^{\circ} \mathrm{C} / 5 \mathrm{mmHg} ;{ }^{1} \mathrm{H}$ NMR ($60 \mathrm{MHz} / \mathrm{CCl}_{4}$) $\delta 6.1-5.6(\mathrm{~m}, 1 \mathrm{H})$, $5.4-5.0(\mathrm{~m}, 3 \mathrm{H}), 2.4(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 1.7-1.5(\mathrm{~m}, 4 \mathrm{H}), 1.3(\mathrm{~d}$, $J=6 \mathrm{~Hz}, 3 \mathrm{H}), 0.9(\mathrm{t}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) 3090,2220 , $1720,1250,990,930,760 \mathrm{~cm}^{-1} ;$ MS $m / e 181\left(\mathrm{M}^{+}+1\right), 151$, 135, 127, 109, 81, 55. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 73.30 ; \mathrm{H}$, 8.95. Found: C, 72.96 ; H, 8.92 .
$\mathbf{P d C l}_{2}-\mathbf{C u C l}_{2}-\mathbf{L i C l}$-Catalyzed Cyclization of Compound 18. The procedure was similar to the cyclization of compound 1a.
trans- α-(E)-(Chloromethylene)- β-(chloromethyl)- γ-al-lyl- γ-butyrolactone (19a): yield 59%; oil; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\left.\mathrm{CDCl}_{3}\right) \delta 6.90(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 2 \mathrm{H})$, $4.50(\mathrm{td}, J=7.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.20(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$; IR (neat) $3080,1760,1640$, $1180,920,790,720,670 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{e}(\%) 225\left[\mathrm{M}^{+}\left(2^{37} \mathrm{Cl}\right)+\right.$ $1](2.5), 223\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right)+1\right](11), 221\left[\mathrm{M}^{+}\left(2^{35} \mathrm{Cl}\right)+1\right](20)$, 183 (75), 181 (75), 179 (100), 155 (3.6), 153 (18), 151 (27), 145 (23), 143 (60), 117 (11), 115 (39), 89, 87, 41. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$: C, $48.90 ; \mathrm{H}, 4.56$. Found: C, 48.87 ; $\mathrm{H}, 4.71$.
$\alpha-(E)$ (Chloromethylene) β-(chloromethyl) $-\gamma$-propyl $-\gamma$ butyrolactone (19b): yield 72\%; ot $140{ }^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} / \mathrm{CDCl}_{3}\right) \delta 6.88[\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.67 \mathrm{H}$ (trans isomer) $]$, $6.80[\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.33 \mathrm{H}$ (cis isomer) $], 4.55[\mathrm{q}, J=6.2 \mathrm{~Hz}$, 0.33 H (cis isomer)], $4.40[\mathrm{td}, J=5.2,4.2 \mathrm{~Hz}, 0.67 \mathrm{H}$ (trans isomer)], $3.72[\mathrm{dd}, J=11.1,6.0 \mathrm{~Hz}, 0.67 \mathrm{H}$ (trans isomer)], $3.60[\mathrm{~m}, 0.66 \mathrm{H}$ (cis isomer)], 3.54 [dd, $J=11.1,8.0 \mathrm{~Hz}, 0.67$ H (trans isomer)], 3.38 [dddd, $J=7.9,6.2,6.0,1.5 \mathrm{~Hz}, 0.33 \mathrm{H}$ (cis isomer)], 3.10 [ddd, $J=7.6,4.2,1.6 \mathrm{~Hz}, 0.67 \mathrm{H}$ (trans isomer) $], 1.7-1.4(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) $3080,1770,1640,1190,970,760,670 \mathrm{~cm}^{-1} ;$ MS m$/ e(\%)$ $227\left[\mathrm{M}^{+}\left(2^{37} \mathrm{Cl}\right)+1\right](10), 225\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right)+1\right](70), 223$ $\left[\mathrm{M}^{+}\left(2^{35} \mathrm{Cl}\right)+1\right](86), 183(2.2), 181(16), 179(23), 145(19), 143$ (56), 117 (40), $115(100), 89,87,43$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12^{-}}$ $\mathrm{Cl}_{2} \mathrm{O}_{2}: \mathrm{C}, 48.45 ; \mathrm{H}, 5.42$. Found: C, $48.35 ; \mathrm{H}, 5.18$.
cis- $\alpha-(E)$-(1^{\prime}-Chloroethylidene) $-\beta$-(chloromethyl) $-\gamma$-propyl $-\gamma$-butyrolactone (19c): yield 80%; ot $145{ }^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} / \mathrm{CDCl}_{3}\right) \delta 4.50(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (dd, $J=11.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55 (dd, $J=11.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.45(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; IR (neat) $1770,1660,1430,1380,1220$, $960,870,760,700,660 \mathrm{~cm}^{-1} ; \mathrm{MS} m / e(\%) 240\left[\mathrm{M}^{+}\left(2^{37} \mathrm{Cl}\right)\right](1.1)$, $238\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right)\right](5.6), 236\left[\mathrm{M}^{+}\left(2^{35} \mathrm{Cl}\right)\right](8.5), 197(2.2), 195$ (12), 193 (17), 166 (11), 131 (49), 129 (100), 71, 65, 43. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$: C, $50.65 ; \mathrm{H}, 5.95$. Found: $\mathrm{C}, 50.55$; H, 6.03 .
$\mathbf{P d}_{2}(\mathrm{dba})_{3} \mathbf{C H C l}_{3}-\mathbf{C u B r}_{2}-\mathrm{LiBr}$-Catalyzed Cyclization of Compounds $\mathbf{1 8 b} \mathbf{- j}$. The procedure was similar to the cyclization of compound $\mathbf{1 a}$.
$\alpha-(E)$ (Bromomethylene) $-\beta$-(bromomethyl) $-\gamma$-methyl $-\gamma$ butyrolactone (19d): yield 92%; ot $150^{\circ} \mathrm{C} / 2 \mathrm{mmHg} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz} / \mathrm{CDCl}_{3}\right) \delta 7.14$ [d, $J=2.0 \mathrm{~Hz}, 0.67 \mathrm{H}$ (trans isomer)], $7.08[\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.33 \mathrm{H}$ (cis isomer)], 4.66 [quint, $J=6.0$
$\mathrm{Hz}, 0.33 \mathrm{H}$ (cis isomer)], 4.32 [qd, $J=6.2,4.0 \mathrm{~Hz}, 0.67 \mathrm{H}$ (trans isomer)], $3.70[\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1.34 \mathrm{H}$ (trans isomer)], $3.60[\mathrm{~m}$, 0.66 H (cis isomer)], $3.10(\mathrm{~m}, 1 \mathrm{H}), 1.48[\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2.01 \mathrm{H}$ (trans isomer)], 1.42 [d, $J=6.0 \mathrm{~Hz}, 0.99 \mathrm{H}$ (cis isomer) $] \mathrm{ppm}$; IR (neat) $3030,1750,1730,1620,1460,1380,940,920,870$, $520 \mathrm{~cm}^{-1} ; \mathrm{MS}$ m/e (\%) 287 [$\left.\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](17), 285\left[\mathrm{M}^{+}(81 \mathrm{Br}\right.$, $\left.\left.{ }^{79} \mathrm{Br}\right)+1\right](34), 283\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](18), 205(92), 203(100)$, 191 (21), 189 (22), 175 (11), 173 (12), 147 (14), 145 (15), 81, 65, 53. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}: \mathrm{C}, 29.61 ; \mathrm{H}, 2.84$. Found: C, 30.05 ; H, 2.48 .
α-(E)-(Bromomethylene)- β-(bromomethyl) $-\gamma$-propyl $-\gamma$ butyrolactone (19e): yield 93% ot $160^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz} / \mathrm{CDCl}_{3}\right) \delta 7.18$ [d, $J=2.0 \mathrm{~Hz}, 0.75 \mathrm{H}$ (trans isomer)], $7.12[\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.25 \mathrm{H}$ (cis isomer)], 4.56 [quint, $J=6.0$ $\mathrm{Hz}, 0.25 \mathrm{H}$ (cis isomer)], 4.40 [td, $J=6.0,4.0 \mathrm{~Hz}, 0.75 \mathrm{H}$ (trans isomer)], $3.50[\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1.50 \mathrm{H}$ (trans isomer)], $3.40[\mathrm{~m}$, 0.50 H (cis isomer)], $3.16(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.00(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; IR (neat) $3050,1770,1640,1180,970$, $840,750,700,630 \mathrm{~cm}^{-1}$; MS m/e (\%) $315\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](12)$, $313\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](23), 311\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](12), 271$ (5.9), 269 (13), 267 (7.2), 189 (12), 187 (12), 161 (100), 159 (98), 133 (19), 95,80 . Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}: \mathrm{C}, 35.80 ; \mathrm{H}$, 4.00. Found: C, 35.40 ; H, 4.13.
α-(E)-(Bromomethylene)- β-(bromomethyl)- γ-pentyl $-\gamma$ butyrolactone (19f): yield 82%; ot $160^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 7.18$ [d, $J=1.5 \mathrm{~Hz}, 0.78 \mathrm{H}$ (trans isomer)], $7.10[\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.22 \mathrm{H}$ (cis isomer)], 4.58 [quint, $J=5.8$ $\mathrm{Hz}, 0.22 \mathrm{H}$ (cis isomer)], 4.40 [td, $J=6.0,4.2 \mathrm{~Hz}, 0.78 \mathrm{H}$ (trans isomer)], 3.60 [d, $J=6.0 \mathrm{~Hz}, 1.56 \mathrm{H}$ (trans isomer)], $3.52[\mathrm{~m}$, 0.44 H (cis isomer) $1,3.16(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.40(\mathrm{~m}, 6 \mathrm{H}), 0.96(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) 3050 , $1770,1630,1180,840,770,700,620,550 \mathrm{~cm}^{-1} ;$ MS m/e (\%) $\left.343\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](10), 341\left[\mathrm{M}^{+}{ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](25), 339$ $\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](11), 261(3.9), 259(4.5), 161(100), 159(91)$, 139 (16), 137 (12), 95,93 , 43. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 38.85; H, 4.74. Found: C, 38.87 ; H, 4.53 .
$\alpha-(E)$-(Bromomethylene) $-\beta$-(bromomethyl)- γ-isopentyl-γ-butyrolactone (19g): yield 82%; ot $162{ }^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 7.15[\mathrm{~d}, J=1.7 \mathrm{~Hz}, 0.76 \mathrm{H}$ (trans isomer)], 7.10 [d, $J=1.7 \mathrm{~Hz}, 0.24 \mathrm{H}$ (cis isomer)], 4.56 [quint, $J=6.1 \mathrm{~Hz}, 0.24 \mathrm{H}$ (cis isomer)], $4.40[\mathrm{td}, J=6.5,4.1 \mathrm{~Hz}, 0.76$ H (trans isomer)], 3.45 [d, $J=7.6 \mathrm{~Hz}, 1.52 \mathrm{H}$ (trans isomer)], $3.35[\mathrm{~m}, 0.48 \mathrm{H}$ (cis isomer)], $3.30(\mathrm{~m}, 1 \mathrm{H}), 1.7-1.2(\mathrm{~m}, 5 \mathrm{H})$, 0.95 (d, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$) ppm; IR (neat) $3070,1770,1640,1470$, $1180,920,840,760,700,620,550 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / e(\%) 343$ $\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](17), 341\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](35), 339$ $\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](18), 270(42), 268(100), 266(43), 261,259$, 159, 109, 66. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, $38.85 ; \mathrm{H}, 4.74$. Found: C, 38.99; H, 4.68.
trans- α-(E)-(Bromomethylene)- β-(bromomethyl)- γ-isopropyl $-\gamma$-butyrolactone (19h): yield 85%; ot $160^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} / \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (dd, $J=6.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~m}$, $1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$; IR (neat) $3080,1770,1630,1170,840,740,630 \mathrm{~cm}^{-1}$; MS m$/ e$ (\%) 315 $\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](2.1), 313\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](3.7), 311$ $\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](2.1), 271(28), 269(29), 243(12), 241(26)$, 239 (14), 189 (25), 187 (28), 106 (91), 104 (100). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, $35.80 ; \mathrm{H}, 4.00$. Found: $\mathrm{C}, 35.78 ; \mathrm{H}, 4.01$.
cis- α-(E)-(1-Bromoethylidene)- β-(bromomethyl)- γ-meth-yl- γ-butyrolactone (19i): yield 91%; ot $140{ }^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 4.60$ (quint, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 (m, 2H), 3.38 (dd, $J=13.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.64(\mathrm{~s}, 3 \mathrm{H}), 1.56$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$) ppm ; IR (neat) $1760,1650,1470,1390,1220$, $910,750,650,570 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / e(\%) 301\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](1.6)$, $299\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](3.3), 297\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](2.1), 219$ (56), 217 (64), 175 (76), 173 (81), 147 (25), 145 (26), 43 (100). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, $32.25 ; \mathrm{H}, 3.38$. Found: C, 32.53; H, 3.37.
cis $-\alpha-(E)$-(1-Bromoethylidene)- β-(bromomethyl) $-\gamma$-pro-pyl- γ-butyrolactone (19j): yield 87%; ot $150^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 4.52$ (quint, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$) , 3.64 (m, 2 H), 3.40 (dd, $J=13.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.66(\mathrm{~s}, 3 \mathrm{H}), 1.96-$ $1.24(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) 1750 , 1640, 1460, 1380, 940, 870, 740, 640, $570 \mathrm{~cm}^{-1}$; MS m/e (\%): $329\left[\mathbf{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](49), 327\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)-1\right](87), 325$
$\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](46), 247(22), 245(20), 175(92), 173$ (100), 147 (28), 145 (25), 121, 66. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 36.84; H, 4.33. Found: C, 37.12; H, 4.35.
cis- α-(E)-(1-Bromoethylidene)- β-(bromomethyl)- γ-butyl $-\gamma$-butyrolactone (19k): yield 94% ot $156^{\circ} \mathrm{C} / 1 \mathrm{mmHg} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 4.56$ (quint, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 $(\mathrm{m}, 2 \mathrm{H}), 3.26(\mathrm{dd}, J=13.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.80-$ $1.30(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) 1760 , $1650,1460,1380,1220,970,740,650,570 \mathrm{~cm}^{-1}$; MS m/e (\%) $343\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+1\right](47), 341\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](89), 339$ $\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](42), 261(12), 259(11), 175(100), 173$ (91), 147, 145, 109, 107. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2}$: C, 38.85; H, 4.74. Found: C, 38.96; H, 4.64.
cis- α-(E)-(1-Bromoethylidene)- β-(bromomethyl)- γ-meth-yl- γ-butyrolactone (191): yield 82%; ot $162{ }^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 4.60$ (quint, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 $(\mathrm{m}, 2 \mathrm{H}), 3.55$ (dd, $J=14.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 0.97$ (t, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; IR (neat) $1750,1640,1470,1380$, $1230,920,840,750,560 \mathrm{~cm}^{-1} ; \mathrm{MS} m / e(\%) 343\left[\mathrm{M}^{+}\left(2^{81} \mathrm{Br}\right)+\right.$ $1](49), 341\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br},{ }^{79} \mathrm{Br}\right)+1\right](100), 339\left[\mathrm{M}^{+}\left(2^{79} \mathrm{Br}\right)+1\right](50)$, 261 (7.0), 259 (6.2), 133, 107, 65, 43. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16}{ }^{-}$ $\mathrm{Br}_{2} \mathrm{O}_{2}: \mathrm{C}, 38.85 ; \mathrm{H}, 4.74$. Found: C, 38.89 ; H, 4.71 .

The Hydrolysis of Dibromosubstituted Derivatives of $\alpha-$ Methylene- γ-butyrolactone. Preparation of α-(Bro-moalkylidene)- β-(hydroxymethyl)- γ-butyrolactones. α-(E)-(Bromomethylene)- β-(hydroxymethyl) $-\gamma$-pentyl $-\gamma$ butyrolactone (26). To a solution of 19 f ($340 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dioxane-water ($1: 1$) (10 mL) was added $\mathrm{CaCO}_{3}(500 \mathrm{mg}$, 5.0 mmol). After refluxing for 30 h , the reaction mixture was cooled to room temperature, acidified with $10 \% \mathrm{HCl}$, and extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic solution was washed with aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under vacuum. The residue was chromatographed on silica gel (eluent: petroleum ether:ethyl acetate $=7: 3$) to yield trans-26 ($138 \mathrm{mg}, 50.0 \%$) and cis-26 ($35 \mathrm{mg}, 12.5 \%$): oil; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} / \mathrm{CDCl}_{3}$) δ trans isomer $7.06(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.24(\mathrm{q}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J$ $=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{brs}, 1 \mathrm{H}), 3.0-2.9(\mathrm{~m}, 1 \mathrm{H}), 1.6-1.1(\mathrm{~m}, 8 \mathrm{H})$, $0.90(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; cis isomer $7.08(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66$ (td, $J=7,3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.94$ (m, 1H), 2.62 (brs, 1 H), $1.6-1.1(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, J=6 \mathrm{~Hz}$, 3H) ppm; IR (neat) $3400,2950,1760,1630,1170,770,700$ cm^{-1}; MS m/e (\%) 279 (18), 277 (17), 248 (8.4), 246 (8.9), 207 (13), 205 (13), 167 (46), 97 (100). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17}-$ $\mathrm{BrO}_{3}: \mathrm{C}, 47.67 ; \mathrm{H}, 6.18$. Found: C, $47.81 ; \mathrm{H}, 6.50$.

Further Transformation of 26. Compound 27 and 28 were prepared from trans-26 according to refs 30 and 27, respectively.

27: yield 94%; oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 7.45-7.30$ $(\mathrm{m}, 5 \mathrm{H}), 6.35(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=6.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.88(\mathrm{~m}$, $1 \mathrm{H}), 2.60(\mathrm{brs}, 1 \mathrm{H}), 1.6-1.1(\mathrm{~m}, 8 \mathrm{H}), 0.95(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; IR (neat) $3400,3030,1750,1630,1600,1490,1460,760$, $700 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / e(\%): 298\left(\mathrm{M}^{+}\right)(2.4), 297\left(\mathrm{M}^{+}-1\right)(11), 227$ (2.1), 211 (100), 197 (2.5), 165 (4.7), 123 (10), 83 (35). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 76.48 ; $\mathrm{H}, 7.43$. Found: $\mathrm{C}, 76.82 ; \mathrm{H}$, 7.50 .

28: yield 90%; oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 7.4-6.5(\mathrm{~m}$, $8 \mathrm{H}), 4.35-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J$ $=8.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{brs}, 1 \mathrm{H}), 1.6-1.1$ (m, 8 H), $0.95(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; IR (neat) 3400,3060 , $1770,1670,1600,1180,800,700 \mathrm{~cm}^{-1} ;$ MS $m / e(\%) 301\left(\mathrm{M}^{+}+\right.$ 1), $300\left(\mathrm{M}^{+}\right), 269(14), 199$ (9.3), 167 (6.5), 99 (36), 43 (100). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$: C, $75.97 ; \mathrm{H}, 8.05$. Found: C, 75.88; H, 7.83 .

Synthesis of (\pm)-A-factor. α-(Z)-($\mathbf{1}^{\prime}$-Bromo-6'-methylheptylidene) $-\beta$-(hydroxymethyl)- γ-butyrolactone (30). To a solution of $\mathbf{3 e}(368 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dioxane-water ($1: 1$) (10 mL) was added lithium hydroxide ($120 \mathrm{mg}, 5.0 \mathrm{mmol}$). After refluxing for 10 h , the reaction mixture was cooled to room temperature, acidified with $10 \% \mathrm{HCl}$, and extracted with ether ($10 \mathrm{~mL} \times 3$). The combined organic solution was washed with aqueous $\mathrm{NaHCO}{ }_{3}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under vacuum. The residue was chromatographed on silica gel (eluent: petroleum ether:ethyl acetate $=7: 3$) to yield

30 ($183 \mathrm{mg}, 60 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} / \mathrm{CDCl}_{3}$) $\delta 4.33$ (dd, $J=9.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.22 (dd, $J=9.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.75-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.4(\mathrm{~m}, 1 \mathrm{H}), 2.7-2.5(\mathrm{~m}, 3 \mathrm{H}), 1.7-1.1(\mathrm{~m}$, $7 \mathrm{H}), 0.85$ (d, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}$) ppm; IR (neat) $3400,2950,1725$, $1640,1480,1370,1210,1130,1020,670 \mathrm{~cm}^{-1}$; MS m/e 307 $\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right)+1\right](97), 305\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)+1\right](100), 225(49), 129$ (11), 109 (27). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BrO}_{3}: \mathrm{C}, 51.16 ; \mathrm{H}, 6.93$. Found: C, 51.67; H, 7.10. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{3} 225.1540$, found 225.1491 .
α-(6'-Methylheptanoyl)- β-(hydroxymethyl)- γ-butyrolactone [(\pm)-A-factor] (29). A mixture of compound 30 (305 $\mathrm{mg}, 1.0 \mathrm{mmol}$), and diethylamine ($365 \mathrm{mg}, 5.0 \mathrm{mmol}$) in acetonitrile (4 mL) was stirred at room temperature for 3 days. $3 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was then added. The reaction mixture was stirred for an additional 10 h . Water $(10 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The $\mathrm{CH}_{2}{ }^{-}$ Cl_{2} solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The
residue was chromatographed on silica gel (eluent: petroleum ether:ethyl acetate $=7: 3)$ to afford (\pm)-A-factor $(29)(125 \mathrm{mg}$, 51%) as a waxy solid. It showed the same IR, ${ }^{1} \mathrm{H}$ NMR, and MS data as those for the natural product. ${ }^{34 \mathrm{a}}$

Acknowledgment. We thank the National Natural Science Foundation of China and Chinese Academy of Sciences for financial support.

Supplementary Material Available: ${ }^{1} \mathrm{H}$ NMR spectra for compounds 19d, 30, and 31 (3 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO941092B

[^0]: (7) (a) Ma, S.; Lu, X. J. Chem. Soc. Chem. Commun. 1990, 733. (b) Ma S.; Lu, X. J. Org. Chem. 1991, 56, 5120. (c) Ma, S.; Zhu, G.; Lu, X. J.Org. Chem. 1993, 58, 3692 .
 (8) (a) Ma, S.; Lu, X. J. Org. Chem. 1993, 58, 1245. (b) Lu, X.; Zhu, G. Synlett 1993, 68. (c) Ma, S.; Lu, X. Unpublished results.

[^1]: (9) Castro, C. E.; Gaughan, E. J.; Owsley, D. C. J. Org. Chem. 1965, 30,587 .

[^2]: (10) (a) Maitlis, P. M. Acc. Chem. Res. 1976, 9, 93. (b) Maitlis, P. M.; Espinet, D.; Mussel, M. J. H. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 6, p 326.
 (11) (a) Kaneda, K.; Uchiyama, T.; Fujiwara, Y.; Imanaka, T., Teranishi, S. J. Org. Chem. 1979, 44, 55. (b) Maitlis, P. M. J. Organomet. Chem. 1980, 200, 161.
 (12) Bäckvall, J.-E. Acc. Chem. Res. 1983, 16, 335.
 (13) (a) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds, Mechanistic Principles and Synthetic Methodology Including Biochemical Processes; Academic Press: New York, 1981; Chapter 7. (b) Bäckvall, J.-E. Pure Appl. Chem. 1992, 64, 429. (c) Wells, A. P.; Kitching, W. J. Org. Chem. 1992, 57, 2517 and references cited therein.
 (14) Heck, R. F. Organotransition Metal Chemistry; Academic Press: New York, 1974; p 110.
 (15) Kochi, J. K. Organometallic Mechanisms and Catalysts; Academic Press: New York, 1978.
 (16) (a) Bäckvall, J.-E. Tetrahedron Lett. 1977, 467. (b) Bäckvall, J.-E.; Akermark, B.; Ljunggren, S. O. J. Am. Chem. Soc. 1979, 101, 2411.
 (17) Budnik, R. A.; Kochi, J. K. J. Organomet. Chem. 1976, 116, C3.

[^3]: (18) (a) Waegell, B. In Organometallics in Organic Synthesis; de Meijere, A.; tom Dieck, H., Eds.; Springer-Verlag: Berlin, 1987; p 203. (b) Heuman, A. In Metal Promoted Selectivity in Organic Synthesis; Noels, A. F., Grasiani, M., Hubert, A. J., Eds.; Kluwer Academic Publisher: Dordrecht, 1991; p 133.
 (19) (a) Bäckvall, J.-E.; Akermark, B. Ljunggren, S. O. J. Chem. Soc., Chem. Commun. 1977, 264. (b) Heumann, A.; Reglier, M.; Waegell, B. Angew. Chem. Int. Ed. Engl. 1979, 18, 866.

[^4]: (20) (a) Molander, G. A.; Hoberg, J. O. J. Am. Chem. Soc. 1992, 114, 3123. (b) Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275. (c) Piers, W. E.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 9406 .
 (21) (a) Rigollier, P.; Young, J. R.; Fowley, L. A.; Stille, J. R. J. Am. Chem. Soc. 1990, 112, 9441 . (b) Young, J. R.; Stille, J. R. Organometallics 1990, $9,3022$.
 (22) (a) Nagashima, H.; Wakamatsu, H.; Ozaki, N.; Ishii, T.; Watanabe, M.; Tajima, T.; Itoh, K. J. Org. Chem. 1992, 57, 1682. (b) Nagashima, H.; Ozaki, N.; Ishii, M.; Seki, K.; Washiyama, M.; Itoh, K. J. Org. Chem. 1993, 58, 464.
 (23) Shimada, S.; Hashimoto, Y.; Sudo, A.; Hasegawa, M.; Saigo, K. J. Org. Chem. 1992, 57, 7126.
 (24) (a) Lambert, F.; Kirschleger, B.; Villieras, J. J. Organomet. Chem. 1991, 406, 71. (b) Okuda, Y.; Nakatsukasa, S.; Oshima, K.; Nozaki, H. Chem. Lett. 1985, 481. (c) Saimoto, H.; Nishio, K.; Yamamoto, H.; Shinoda, M. Bull Chem. Soc. Jpn. 1983, 56, 3093.

[^5]: (26) (a) Dale, J. Stereochemistry and Conformational Analysis; Universitetsforlaget, New York, 1978; p 192. (b) Mundy, B. P. Concepts of Organic Synthesis, Carbocyclic Chemistry; Marcel Dekker, Inc.: New York, 1979; p 16. (c) Nasipuri, D. Stereochemistry of Organic Compounds; John Wiley \& Sons: New York, 1991; p 275.
 (27) Abelman, M. M.; Overman, L. E. J. Am. Chem. Soc. 1988, 110, 2328.
 (28) Ji, J.; Lu, X. Synlett 1993, 745.
 (29) Smith, J. G.; Dibble, P. W.; Sandborn, R. E. J. Org. Chem. 1986, 51, 3762 .

[^6]: (30) Weir, J. R.; Patel, B. A.; Heck, R. F. J. Org. Chem. 1980, 45, 4926.
 (31) Khokhlov, A. S.; Anisova, L. N.; Tovarova, I. I.; Kleiner, E. M.; Kovalenko, I. V.; Krasilnikova, O. I.; Kornitskaya, E. Y.; Pliner, S. A. Z. Allgem. Mikrobiol. 1973, 13, 67 .
 (32) Kleiner, E. M.; Pliner, S. A.; Soifer, V. S.; Onoprienko, V. V.; Balasheva, T. A.; Rozynov, B. V.; Khokhlov, A. S. Bioorg. Khim. 1976, 2, 1142.
 (33) Kleiner, E. M.; Onoprienko, V. V.; Pliner, S. A.; Soifer, V. S.; Khokhlov, A. S. Bioorg. Khim. 1977, 3, 424.
 (34) (a) Mori, K.; Yamane, K. Tetrahedron 1982, 38, 2919. (b) Mori, K.; Chiba, N. Liebigs Ann. Chem. 1990, 30.
 (35) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon: Oxford, 1992.
 (36) Ukai, T.; Kawazura, H.; Ishii, Y. J. Organomet. Chem. 1974, 65,253 .
 (37) Smith, E. F.; Wallace, D. L. J. Am. Chem. Soc. 1894, 16, 465.
 (38) Chatt, J.; Mann, F. G. J. Chem. Soc. 1939, 1622.

[^7]: (39) Brandsma, L. Preparative Acetylenic Chemistry, 2nd ed.; Elsevier: Oxford, 1988; p 100.

[^8]: (40) (a) Balas, L.; Jousseaume, B.; Langwost, B. Tetrahedron Lett. 1989, 30, 4525. (b) Trost, B. M.; Grese, T. A.; Chan, D. M. T. J. Am. Chem. Soc. 1991, 113, 7350.

